360 research outputs found

    SVtL: System Verification through Logic: tool support for verifying sliced hierarchical statecharts

    Get PDF
    SVtL is the core of a slicing-based verification environment for UML statechart models. We present an overview of the SVtL software architecture. Special attention is paid to the slicing approach. Slicing reduces the complexity of the verification approach, based on removing pieces of the model that are not of interest during verification. In [18] a slicing algorithm has been proposed for statecharts, but it was not able to handle orthogonal regions efficiently. We optimize this algorithm by removing false dependencies, relying on the broadcasting mechanism between different parts of the statechart model

    A Process Algebraic Fluid Flow Model of Emergency Egress

    Get PDF
    Abstract-Pervasive environments offer an increasing number of services to a large number of people moving within these environments including timely information about where to go and when. People using these services interact with the system but they are also meeting other people and performing other activities as relevant opportunities arise. The design of such systems and the analysis of collective dynamic behaviour of people within them is a challenging problem. In previous work we have successfully explored a scalable analysis of stochastic process algebraic models of smart signage systems. In this paper we focus on the validation of a representative example of this class of models in the context of emergency egress. This context has the advantage that there is detailed data available from studies with alternative analysis methods. A second aim is to show how realistic human behaviour, often observed in emergency egress, can be embedded in the model and how the effect of this behaviour on building evacuation can be analysed in an efficient and scalable way

    Atomic layer depostion of TiO2/Al2O3 films for optical applications

    Get PDF
    Atomic layer deposition (ALD) is an important technology for depositing functional coatings on accessible, reactive surfaces with precise control of thickness and nanostructure. Unlike conventional chemical vapour deposition, where growth rate is dependent on reactant flux, ALD employs sequential surface chemical reactions to saturate a surface with a (sub-) monolayer of reactive compounds such as metal alkoxides or covalent halides, followed by reaction with a second compound such as water to deposit coatings layer-by-layer. A judicious choice of reactants and processing conditions ensures that the reactions are self-limiting, resulting in controlled film growth with excellent conformality to the substrate. This paper investigates the deposition and characterisation of multi-layer TiO2 /Al2O3 films on a range of substrates, including silicon , soda glass and polycarbonate, using titanium tetrachloride/water and trimethylaluminium/water as precursor couples. Structure-property correlations were established using a suite of analytical tools, including transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS), X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). The evolution of nanostructure and composition of multi-layer high/low refractive index stacks are discussed as a function of deposition parameters

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions

    Get PDF
    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Scalable context-dependent analysis of emergency egress models

    Get PDF
    Pervasive environments offer an increasing number of services to a large number of people moving within these environments, including timely information about where to go and when, and contextual information about the surrounding environment. This information may be conveyed to people through public displays or direct to a person's mobile phone. People using these services interact with the system but they are also meeting other people and performing other activities as relevant opportunities arise. The design of such systems and the analysis of collective dynamic behaviour of people within them is a challenging problem. We present results on a novel usage of a scalable analysis technique in this context. We show the validity of an approach based on stochastic process-algebraic models by focussing on a representative example, i.e. emergency egress. The chosen case study has the advantage that detailed data is available from studies employing alternative analysis methods, making cross-methodology comparison possible. We also illustrate how realistic, context-dependent human behaviour, often observed in emergency egress, can naturally be embedded in the models, and how the effect of such behaviour on evacuation can be analysed in an efficient and scalable way. The proposed approach encompasses both the agent modelling viewpoint, as system behaviour emerges from specific (discrete) agent interaction, and the population viewpoint, when classes of homogeneous individuals are considered for a (continuous)approximation of overall system behaviour
    • …
    corecore